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Nematic—smecticA phase boundary of ideally oriented Gay-Berne system: Local density
functional versus isothermal-isobaric Monte Carlo simulation
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The main focus of the present paper is on studying the nematic—smepti@ase boundary of an ideally
oriented Gay-Berne system. The phase diagram is determined by means of an isothermal-isobaric Monte Carlo
simulation. The results are compared with predictions of the local density functional expanded up to second
and third order in the one-particle distribution function. It is shown that generally the second-order expansion
does not give satisfactory predictions for smectics. Going beyond the leading order yields good quantitative
agreement at moderate densities. With increasing density the relative error of the local density functional
calculations increases, but usually does not exceed 10% in densities. We conclude that the density functional
approach could be competitive to time-consuming simulations in determining phase diagrams of spatially and
orientationally ordered liquid crystalline structures.
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Monte Carlo(MC) and molecular dynamics simulations [8] as solid. Cg appears stable down =0 and is com-
are extremely powerful techniques in gaining insight intoposed of layers with, on the average, hexagonal distribution
liquid crystalline behavior. They allow one to obtain numeri- of the molecular centers of mass within the layer.
cally exact results for problems that would otherwise require  Qur goal is to study the restricted model to test the pre-
approximate methods, often of uncertain validity. Amongdictive power of the local density functional theory when
such methods is, e.g., the widely used classical mean fielgpplied to smectics. Due to limitations imposed on molecular
theory. orientations the density functional calculations are easily car-

A starting point of the simulations and of approximate ried out to orders higher than the leading one. Perhaps we
theories is the definition of interparticle interactions. For lig-should add that the simplification of the ideal nematic order
uid crystals, four broad classes of pair interactions have beegertainly gives a qualitatively correct insight into liquid crys-
discussed in the literature. These inclyeeLebwohl-Lasher  ta|line ordering. This has been demonstrated in the literature
lattice systemg1-3], (b) hard particle model$4—6|, (c)
single site soft potentials, where the most popular is a non-
spherical version of the Lennard-Jones potential, also known 3t
as the Gay and Berne interactipi-13], and (d) atomistic
models[14].

Among the models mentioned, the Gay-Berne potential
appears remarkably successful in computer modeling of lig-
uid crystalline behavior with predictions being in line with 1r
what is observed for real mesogens. The most thoroughly
documented case is the one defined by the length-to-breadth ot
ratio of 3:1, the well depth anisotropy ratio of 5:1, and the
exponentsu=2 andv=1 [8]. Its potential energy contours
for the long molecular axes parallel to each other are shown
in Fig. 1. The complete phase diagram is found 8, re-
vealing isotropic liquid, nematic, and soliglso often re- -2y
ferred to as crystalline smecti®)} phases. In this paper we
report on combined MC isothermal-isobaric ensemble simu- -3r
lation and local density functional analysis of the perfectly i - \
aligned Gay-Berne system interacting through the potential -2 - 0 1 2
shown in Fig. 1. We assume that the t_ranslatlonal Qegrges of FIG. 1. The potential energy contours of the Gay-Berne interac-
freedom O,f the molecules are l%”reSt”Cted but their or'emaﬁon for a pair of ideally oriented molecules of length-to-breadth
tions are fixed par_allel to thE axis of the laboratory frame. ratio 3:1. The molecules are assumed to be parallel ta thes of
That s, the nematic phase is the reference state of the Systegy, |aporatory frame. The well depth anisotropy ratio of the poten-
with the nematic director being alorg Interestingly, with  a) is 5:1 and the exponents and » have the values 2 and 1,
this restriction the smectié{S,) phase appears stable, Figs. respectively[8,12,13. The contours are shown for values of the
2—4, in addition to the previously mentioned nemdatl)  potential between 5 and 2, in steps of 0[23]. Numbers are given
phase and the crystalline smecB¢Ccrg) phase, reported in in reduced units.
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FIG. 2. Transversal positional correlation functign(r’) at FIG. 4. Layer thickness versys of S, phase obtained from

T'=1.1 and different pressure values. Continuous line correspondgimulations(solid circles and by means of local density functional
to S, phase(P"=0.5,7,=0.3), dashed line is taken iN phase(P" theory.d” is shown alN-S, transition for points represented by solid

=0.4,7,~0.05, and inset ShOWSL(rl) in Crg phase(P"=0.9,7; circles in Fig. 3. Lines depict results for secoriel----) and third-
=0.9. (-----) order local density functional calculations.

for the nematic phagd 5,16 and for polar ordering in smec- cqrrections[19,20]. Starting from the nematic phase &t
tic phaseq12,13 of perfectly oriented Gay-Berne systems. -1 1 and reduced pressure Bf=0.2 the system was next
Also more general models of smectic orderjdg] and stud-  compressed with the pressure step of 0.1 until a stable
ies of anchorind 18] have proved usefulness of such model-gmecticA phase was obtained. The reverse process showed
Ing. _ _ _ _ no hysteresis indicating that the phase transition to the
~ We performed isothermal-isobaric Monte Carlo simula-gmecticA phase was second order. The maximal trial particle
tions in a standard wa}19,2( for a system consisting of move did not exceed 0.n reduced unitsand was adjusted
600 ideally oriented Gay-Berne molecules, Fig. 1. A reducedyyring simulation to guarantee the acceptance ratio of 0.5.
system of units has been used as define8id1-13 and  gach cycle was followed by trial changes of the system box
given in the Appendix. Although a standard cutoff at thegjges. The number of cycles needed to equilibrate the system
reduced distance of 4 was applied, the effect of the potentiglas approximately 100 000. The production run took another
tail has been taken into account by evaluating long-rangg oo 000-200 000 cycles with particle configurations being
17 § saved every 100 cycles.

- The smecticA structure has been identified by calculating

s the translational order parameter along #haxis[13,21]

7 = [(exp(2miz'1d"))|, D

154 K - , whereZ' is the reduced coordinate along the director ehd

i ! is the smectic layer spacing. TINPT ensemble thermody-
| - ! namic average is denoted Hy--). The initially unknown

¢ 4 layer spacing is adjusted by maximizing the translational or-

4 der parameter with respect tb. Clearly, for the ideal nem-
1.34 i atic liquid 7,=0 while for the ideal smectié- phaser;=1.
. Owing to the finite size of the system is nonzero in the
ar—e— 7 nematic phase as well, but the fluctuationsrpfn the nem-

Frd atic phase were found to be relatively small and oscillate
-7 between 0.04 and 0.09.
Lol PE The other useful quantity monitored was the pair distribu-

022 024 026 028 030 tion function[13,22
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FIG. 3. Phase diagram obtained from simulations and by means

of local density functional theory in plane of reduced den&ify o the smectiad ordering it is sufficient to consider only
and te.mperaturéT ). Lines depict boundary between nematic and longitudinal and transversal componentsgofith respect to
smecticA phases obtained up to secofié---- and third (-----) éhe directo13]. They are denoteg|(rﬁ) andgi(rl), respec-

order of local density functional expansion. Points refer to the same, * . ;
phase boundary frofNPT Monte Carlo simulation: open squares tively. Note thatg(r,) provides an alternative way of deter-

correspond to the phase diagram without long-range corrections af®!ning d" while g, (r,) allows one to distinguish b*etween
solid circles represent diagram after taking into account long-rangéhe Sy and Cg phases. The typical behavior of, (r ) in
corrections. Solid circles are shown together with the correspondinéN, Sy, and Cg phases is shown in Fig. 2. The phase diagram
error bars. Stable smectiEphase appears at higher densities. obtained from simulationéFig. 3) is compared with predic-
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tions of the density functional theoDFT). According to 151 / // o—ei
that theory[23—26 the grand potentiaf)[p] of liquid crys- /]
tals is a functional of the one-particle distribution function / /
p(i). In the absence of an external field the expression for ] / /
QO[p] reads / /
o—b—1

L 1.31 /
Olp)= Fpl - f (i), ® _ L

wherei denotes all single particle coordinates and where the
free energyF|p] is given by R

BFlpl= f d(i)p(i){In A3p(i) - 1} = ®[p]. (4) ' ' P

FIG. 5. Comparison between phase diagram of ideally aligned
Gay-Berne system witik=3.0 (pointy and the unrestricted Gay-
é?,erne system of molecules with length-to-breadth ratio 3.8:1
(taken from Ref[10]). Only a part of the diagram with the stable
smecticA island is shown.

Here A comes from the integration over momenta.

The first part of Eq(4) represents the free energy of the
noninteracting gas of particles. The most important is th
excess part denoted I p]. Here we approximaté[p] by
means of the Mayer expansi¢f7]

1 [i._e., with the(pg)2 term ir_1 Eq.(7) being dis_regarddd and _
Q)[p]:—ffd(]_)d(z)f(]_,z)p(]_)p(z) with a computer simulation. The layer thickness resulting
2! from DFT and simulations is shown in Fig. 4. Please note
that at low temperatures the agreement between the third-

. f f f d(1)d(2)d(3)f(1,2f(2,3)f(1,3) order calculations and simulations is within experimental er-
3 ror (except ford") while generally the discrepancy does not
0, H . .
X p(D)p(2)p(3) + -+, (5)  exceed 10%. We should mention that the ordinary mean field

analysis yields the relative error of 30%-50% for nematics
wheref is the Mayer functionf(i,j)=e#V() -1, andV(i,j)  and is not fully conclusive for smectics as it usually does not
is the pair potential. The equilibrium distribution function provide the equilibrium value fod".
p(i) is found from the functional minimization of2 with Interestingly, in simulations of de Miguel and Ve[ no
respect top subject to the normalization conditig@7]. The  StableS, phase has been detected. Freezing the orientational

necessary condition for a minimum is given in the form of degrees of freedom enhances the stabilitgofvith respect
the nonlinear integral equation to N and Cg and, eventually, makeS, stable in a limited

range of temperature and density. We would like to add that

) 5P[p] a quite similar phase boundary between nematic and
pli) =N ex E (6)  smecticA phases was found for an orientationally unre-
Spli) . . ; )
stricted model, but with a slightly larger shape anisotropy
where N is the normalization constant. [10] (see Fig. % Thus, we could speculate that the effect of

The continuous nematic—smec#icphase transition can restricting orientations is partly compensated by going to
be found from Eq(6) by performing a bifurcation analysis more anisotropic molecules. Also it shows that release of
of Eq. (6) about the reference nematic state. Choogifiy ~ geometrical restriction and switching on an external electric
=p(Z)=py(1+2rcog27Z /d)+---), we find that the (magngtia field. instead Woulq.sta'bilize the fieId-induced
nematic—smectiéx phase boundary must satisfy the equationn€ématic—smectiéx phase transition in the model studied.

Finally, we should mention that the qualitatively correct

s Xpg, %, 27 _,, 2 - results obtained with the density functional expansion indi-

1=pg | dr’f(r)co d*z *(pg)” | dr'ar cate the possibility of constructing a hybrid method that

would combine computer simulation with density functional

27*72*") 4. ) theory to study phase diagrams of complex fluids. For in-
d ’ stance, computer simulation dafsinglet and pair distribu-

- « xg P S tion functiong in the isotropic or nematic phase could be
where *f("J)Ef(r T =exd-Ugg(r '-r)/T]-1 angl used as input to constructpa density funth)ionaI expansion.
whereUgg represents the Gay-Berne potentiakpressed in - g psequent application of the bifurcation theory would then
reduced units Equation(7) links T, d', andp,. For fixedp,  gjiow for predictions about more ordered phases, like smec-
the maximalT as a function ofl determines the transition s Atomistic simulations, which are still at the preliminary
temperature and the equilibrium layer spacing. The corregiaqe seem natural candidates for practical use of the hybrid
sponding equilibrium pressure is found from ordinary ther-peiaqg. Its construction is currently under way and the re-

modynamic relationf27]. The phase diagram evaluated with g 15 \ill be presented in our forthcoming publication.
the help of Eq.7) is shown in Fig. 3, where the full third-

order density functional analysislashed lingis compared This work was supported by the PolidiBN) Project No.
with the calculations that go only to leading order in density5 PO3B 052 20. We also gratefully acknowledge the KBN

X f(r')f(r'" - r”)f(r”’)cos(
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computing grant(No. KBN/SGI2800/UJ/025/2003toward  contact separation and the well depth for a pair of molecules

the use of the ACK CyfronetKrakéw) computers. in the cross arrangemefite., when all scalar products be-
tween the vectors describing molecular orientations and the
APPENDIX: REDUCED UNITS separation vector vanishThe dimensionless reduced units

It is convenient to define the dimensionleeduceg ~ (denoted by an asterislof other quantities can be derived

units of distance and energy in terms of the Gay-Berne poyielding distancer” _T/Uo, energy U’ =Ule,, temperature
tential parameters;, and e, [13], which correspond to the T =kgT/eo, densityp’=pag, and pressur® =Pag/ &
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