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The main focus of the present paper is on studying the nematic–smectic-A phase boundary of an ideally
oriented Gay-Berne system. The phase diagram is determined by means of an isothermal-isobaric Monte Carlo
simulation. The results are compared with predictions of the local density functional expanded up to second
and third order in the one-particle distribution function. It is shown that generally the second-order expansion
does not give satisfactory predictions for smectics. Going beyond the leading order yields good quantitative
agreement at moderate densities. With increasing density the relative error of the local density functional
calculations increases, but usually does not exceed 10% in densities. We conclude that the density functional
approach could be competitive to time-consuming simulations in determining phase diagrams of spatially and
orientationally ordered liquid crystalline structures.
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Monte CarlosMCd and molecular dynamics simulations
are extremely powerful techniques in gaining insight into
liquid crystalline behavior. They allow one to obtain numeri-
cally exact results for problems that would otherwise require
approximate methods, often of uncertain validity. Among
such methods is, e.g., the widely used classical mean field
theory.

A starting point of the simulations and of approximate
theories is the definition of interparticle interactions. For liq-
uid crystals, four broad classes of pair interactions have been
discussed in the literature. These includesad Lebwohl-Lasher
lattice systemsf1–3g, sbd hard particle modelsf4–6g, scd
single site soft potentials, where the most popular is a non-
spherical version of the Lennard-Jones potential, also known
as the Gay and Berne interactionf7–13g, and sdd atomistic
modelsf14g.

Among the models mentioned, the Gay-Berne potential
appears remarkably successful in computer modeling of liq-
uid crystalline behavior with predictions being in line with
what is observed for real mesogens. The most thoroughly
documented case is the one defined by the length-to-breadth
ratio of 3:1, the well depth anisotropy ratio of 5:1, and the
exponentsm=2 andn=1 f8g. Its potential energy contours
for the long molecular axes parallel to each other are shown
in Fig. 1. The complete phase diagram is found inf8g, re-
vealing isotropic liquid, nematic, and solidsalso often re-
ferred to as crystalline smectic-Bd phases. In this paper we
report on combined MC isothermal-isobaric ensemble simu-
lation and local density functional analysis of the perfectly
aligned Gay-Berne system interacting through the potential
shown in Fig. 1. We assume that the translational degrees of
freedom of the molecules are unrestricted but their orienta-
tions are fixed parallel to thez axis of the laboratory frame.
That is, the nematic phase is the reference state of the system
with the nematic director being alongz. Interestingly, with
this restriction the smectic-AsSAd phase appears stable, Figs.
2–4, in addition to the previously mentioned nematicsNd
phase and the crystalline smectic-BsCrBd phase, reported in

f8g as solid. CrB appears stable down toT=0 and is com-
posed of layers with, on the average, hexagonal distribution
of the molecular centers of mass within the layer.

Our goal is to study the restricted model to test the pre-
dictive power of the local density functional theory when
applied to smectics. Due to limitations imposed on molecular
orientations the density functional calculations are easily car-
ried out to orders higher than the leading one. Perhaps we
should add that the simplification of the ideal nematic order
certainly gives a qualitatively correct insight into liquid crys-
talline ordering. This has been demonstrated in the literature

FIG. 1. The potential energy contours of the Gay-Berne interac-
tion for a pair of ideally oriented molecules of length-to-breadth
ratio 3:1. The molecules are assumed to be parallel to thez axis of
the laboratory frame. The well depth anisotropy ratio of the poten-
tial is 5:1 and the exponentsm and n have the values 2 and 1,
respectivelyf8,12,13g. The contours are shown for values of the
potential between 5 and 2, in steps of 0.25f13g. Numbers are given
in reduced units.
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for the nematic phasef15,16g and for polar ordering in smec-
tic phasesf12,13g of perfectly oriented Gay-Berne systems.
Also more general models of smectic orderingf17g and stud-
ies of anchoringf18g have proved usefulness of such model-
ing.

We performed isothermal-isobaric Monte Carlo simula-
tions in a standard wayf19,20g for a system consisting of
600 ideally oriented Gay-Berne molecules, Fig. 1. A reduced
system of units has been used as defined inf8,11–13g and
given in the Appendix. Although a standard cutoff at the
reduced distance of 4 was applied, the effect of the potential
tail has been taken into account by evaluating long-range

correctionsf19,20g. Starting from the nematic phase atT*

=1.1 and reduced pressure ofP* =0.2 the system was next
compressed with the pressure step of 0.1 until a stable
smectic-A phase was obtained. The reverse process showed
no hysteresis indicating that the phase transition to the
smectic-A phase was second order. The maximal trial particle
move did not exceed 0.2sin reduced unitsd and was adjusted
during simulation to guarantee the acceptance ratio of 0.5.
Each cycle was followed by trial changes of the system box
sides. The number of cycles needed to equilibrate the system
was approximately 100 000. The production run took another
100 000–200 000 cycles with particle configurations being
saved every 100 cycles.

The smectic-A structure has been identified by calculating
the translational order parameter along thez axis f13,21g

t1 = ukexps2piz* /d*dlu, s1d

wherez* is the reduced coordinate along the director andd*

is the smectic layer spacing. TheNPT ensemble thermody-
namic average is denoted byk¯l. The initially unknown
layer spacing is adjusted by maximizing the translational or-
der parameter with respect tod* . Clearly, for the ideal nem-
atic liquid t1=0 while for the ideal smectic-A phaset1=1.
Owing to the finite size of the systemt1 is nonzero in the
nematic phase as well, but the fluctuations oft1 in the nem-
atic phase were found to be relatively small and oscillate
between 0.04 and 0.09.

The other useful quantity monitored was the pair distribu-
tion function f13,22g

gsr *d =
V*

N2Ko
i

o
jÞi

dsr * − r i
* + r j

*dL . s2d

For the smectic-A ordering it is sufficient to consider only
longitudinal and transversal components ofg with respect to
the directorf13g. They are denotedgisr i

*d andg'sr'
* d, respec-

tively. Note thatgisr i
*d provides an alternative way of deter-

mining d* while g'sr'
* d allows one to distinguish between

the SA and CrB phases. The typical behavior ofg'sr'
* d in

N, SA, and CrB phases is shown in Fig. 2. The phase diagram
obtained from simulationssFig. 3d is compared with predic-

FIG. 2. Transversal positional correlation functiong'sr'
* d at

T* =1.1 and different pressure values. Continuous line corresponds
to SA phasesP* =0.5,t1=0.3d, dashed line is taken inN phasesP*

=0.4,t1<0.05d, and inset showsg'sr'
* d in CrB phasesP* =0.9,t1

=0.8d.

FIG. 3. Phase diagram obtained from simulations and by means
of local density functional theory in plane of reduced densitysr*d
and temperaturesT*d. Lines depict boundary between nematic and
smectic-A phases obtained up to seconds-·-·-·-d and third s-----d
order of local density functional expansion. Points refer to the same
phase boundary fromNPT Monte Carlo simulation: open squares
correspond to the phase diagram without long-range corrections and
solid circles represent diagram after taking into account long-range
corrections. Solid circles are shown together with the corresponding
error bars. Stable smectic-A phase appears at higher densities.

FIG. 4. Layer thickness versusr* of SA phase obtained from
simulationsssolid circlesd and by means of local density functional
theory.d* is shown atN-SA transition for points represented by solid
circles in Fig. 3. Lines depict results for second-s-·-·-·-d and third-
s-----d order local density functional calculations.
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tions of the density functional theorysDFTd. According to
that theoryf23–26g the grand potentialVfrg of liquid crys-
tals is a functional of the one-particle distribution function
rsid. In the absence of an external field the expression for
Vfrg reads

Vfrg = Ffrg − mE dsidrsid, s3d

wherei denotes all single particle coordinates and where the
free energyFfrg is given by

bFfrg =E dsidrsidhln L3rsid − 1j − Ffrg. s4d

HereL comes from the integration over momenta.
The first part of Eq.s4d represents the free energy of the

noninteracting gas of particles. The most important is the
excess part denoted byFfrg. Here we approximateFfrg by
means of the Mayer expansionf27g

Ffrg =
1

2!
E E ds1dds2dfs1,2drs1drs2d

+
1

3!
E E E ds1dds2dds3dfs1,2dfs2,3dfs1,3d

3 rs1drs2drs3d + ¯ , s5d

wheref is the Mayer function,fsi , jd=e−bVsi,jd−1, andVsi , jd
is the pair potential. The equilibrium distribution function
rsid is found from the functional minimization ofV with
respect tor subject to the normalization conditionf27g. The
necessary condition for a minimum is given in the form of
the nonlinear integral equation

rsid = N expFdFfrg
drsid G , s6d

whereN is the normalization constant.
The continuous nematic–smectic-A phase transition can

be found from Eq.s6d by performing a bifurcation analysis
of Eq. s6d about the reference nematic state. Choosingrsid
;rsz*d=r0

*s1+2t1coss2p z* /d*d+¯ d, we find that the
nematic–smectic-A phase boundary must satisfy the equation

1 = r0
* E dr *8fsr *8dcosS2p

d* z*8D + sr0
*d2E dr *8dr *9

3 fsr *8dfsr *9 − r *8dfsr *9dcosS2p

d* z*9D + ¯ , s7d

where fsi , jd; fsr * ,r *8d=expf−UGB
* sr *8−r *d /T*g−1 and

whereUGB
* represents the Gay-Berne potentialsexpressed in

reduced unitsd. Equations7d links T* , d* , andr0
* . For fixedr0

*

the maximalT* as a function ofd* determines the transition
temperature and the equilibrium layer spacing. The corre-
sponding equilibrium pressure is found from ordinary ther-
modynamic relationsf27g. The phase diagram evaluated with
the help of Eq.s7d is shown in Fig. 3, where the full third-
order density functional analysissdashed lined is compared
with the calculations that go only to leading order in density

fi.e., with thesr0
*d2 term in Eq.s7d being disregardedg, and

with a computer simulation. The layer thickness resulting
from DFT and simulations is shown in Fig. 4. Please note
that at low temperatures the agreement between the third-
order calculations and simulations is within experimental er-
ror sexcept ford*d while generally the discrepancy does not
exceed 10%. We should mention that the ordinary mean field
analysis yields the relative error of 30%–50% for nematics
and is not fully conclusive for smectics as it usually does not
provide the equilibrium value ford* .

Interestingly, in simulations of de Miguel and Vegaf8g no
stableSA phase has been detected. Freezing the orientational
degrees of freedom enhances the stability ofSA with respect
to N and CrB and, eventually, makesSA stable in a limited
range of temperature and density. We would like to add that
a quite similar phase boundary between nematic and
smectic-A phases was found for an orientationally unre-
stricted model, but with a slightly larger shape anisotropy
f10g ssee Fig. 5d. Thus, we could speculate that the effect of
restricting orientations is partly compensated by going to
more anisotropic molecules. Also it shows that release of
geometrical restriction and switching on an external electric
smagneticd field instead would stabilize the field-induced
nematic–smectic-A phase transition in the model studied.

Finally, we should mention that the qualitatively correct
results obtained with the density functional expansion indi-
cate the possibility of constructing a hybrid method that
would combine computer simulation with density functional
theory to study phase diagrams of complex fluids. For in-
stance, computer simulation datassinglet and pair distribu-
tion functionsd in the isotropic or nematic phase could be
used as input to construct a density functional expansion.
Subsequent application of the bifurcation theory would then
allow for predictions about more ordered phases, like smec-
tics. Atomistic simulations, which are still at the preliminary
stage, seem natural candidates for practical use of the hybrid
method. Its construction is currently under way and the re-
sults will be presented in our forthcoming publication.
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FIG. 5. Comparison between phase diagram of ideally aligned
Gay-Berne system withk=3.0 spointsd and the unrestricted Gay-
Berne system of molecules with length-to-breadth ratio 3.8:1
staken from Ref.f10gd. Only a part of the diagram with the stable
smectic-A island is shown.
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APPENDIX: REDUCED UNITS

It is convenient to define the dimensionlesssreducedd
units of distance and energy in terms of the Gay-Berne po-
tential parameterss0 and «0 f13g, which correspond to the

contact separation and the well depth for a pair of molecules
in the cross arrangementsi.e., when all scalar products be-
tween the vectors describing molecular orientations and the
separation vector vanishd. The dimensionless reduced units
sdenoted by an asteriskd of other quantities can be derived
yielding distancer* =r /s0, energy U* =U /«0, temperature
T* =kBT/«0, densityr* =rs0

3, and pressureP* =Ps0
3/«0.
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